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Abstract

The modern analog technique (MAT) is a quantitative calibration tool for using modern pollen assemblages to
interpret fossil pollen assemblages for vegetation and climate reconstruction. When the MAT is applied using
multivariate distance metrics, a cutoff value for the metric is often used to determine the presence/absence of analogs
in a modern pollen reference set. Two kinds of error arise when a cutoff value is used: (1) false positive error, which
occurs when analogy is falsely determined to exist between the vegetation (or other parameter) of a sample of interest
and that of a sample in the reference set; and (2) false negative error, which occurs when analogy is falsely determined
not to exist. The existing literature focuses primarily on examining cutoff thresholds from the perspective of reducing
false positive error, with relatively little attention paid to false negative error and to the inherent trade-off between the
two errors. This paper sets forth a general analytical framework for determining cutoff thresholds that minimize the
joint occurrence of the two errors, and employs the squared chord distance metric with a newly developed reference
set of modern pollen surface samples from southern California, USA, as a demonstration case. It also examines the
nature of the tradeoffs that occur if an analyst decides to accept increased risk (beyond the joint minimum) of one of
the kinds of error for additional reduction of the other. An asymmetric tradeoff in these risks above and below the
joint error minimizing cutoff(s) is described (a more rapid proportionate increase of false negatives at cutoffs below
the joint minimum in relation to the proportionate increase of false positives at cutoffs above it), which is controlled
by the relative variances of the distributions of like- and non-like-vegetation sample comparisons in terms of the
distance metric. This asymmetry is found to be general among sample sets reported using the squared chord distance,
but is not general across other distance metrics.
© 2003 Elsevier B.V. All rights reserved.
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pollen assemblages employs a multivariate dis-
tance (or dissimilarity) metric as a measure of
closeness for quantitatively determining analogy
between modern and the fossil pollen samples.
In particular, the squared chord distance metric
(SCD) has been used for a variety of pollen-based
reconstructions of forest and climate dynamics in
North America (e.g. Overpeck et al., 1985; An-
derson et al., 1989; Bartlein and Whitlock, 1993;
Davis, 1995; Calcote, 1998; Davis et al., 1998;
Davis, 1999; Davis et al., 2000). As a ‘signal-to-
noise’ enhancing measure (Prentice, 1980; Over-
peck et al., 1985), SCD dampens the effect of
dominant pollen taxa, heightening somewhat the
importance of less abundant taxa; and has shown
optimizing characteristics in relationship to other
dissimilarity measures when used with pollen as-
semblages from a wide variety of vegetation types
(Overpeck et al., 1985; Gavin et al., 2003). Other
distance metrics, such as the Canberra metric
(Prentice, 1980; Overpeck et al., 1985; cf. Juggins,
2003), are now being explored for use in situa-
tions in which the information content of the pol-
len assemblages is concentrated in poorly repre-
sented taxa (e.g. Oswald et al., 2003).

A key issue in using any distance metric to
select analogs, SCD included, is the cutoff value
chosen, i.e. the quantitative level of dissimilarity
below which two samples are considered reason-
able matches. Overpeck et al. (1985) and Bartlein
and Whitlock (1993) examined this issue for veg-
etation formations and forest types in the semi-
tropical, temperate, and boreal forests of eastern
North America, and Calcote (1998) examined it
for specific stand types in the forests of northern
Wisconsin and the Upper Peninsula of Michigan.
In western North America, Anderson et al. (1989)
examined it for grasslands, parklands, boreal for-
ests, and tundra in interior Alaska and northwest-
ern North America, and Davis (1995) examined it
for a variety of vegetation types in significant por-
tions of the western and southwestern USA. The
focus of these examinations has been mainly on
reducing the chance of falsely identifying two pol-
len spectra as being from similar vegetation when
they are not (false positive error — analogous to
Type I error in statistical hypothesis testing). The
SCD cutoffs determined by Overpeck et al. (1985)

and Calcote (1998) are 0.15, 0.12, and 0.05 for
vegetation formations, forest types, and forest
stands, respectively. The cutoff used by Bartlein
and Whitlock (1993) is 0.205. The cutoff deter-
mined by Anderson et al. (1989) for ‘good ana-
logs’ or ‘strong analogs’ is 0.095, and the ‘conser-
vative’ cutoff for separating ‘analog’ from ‘no
analog’ situations is 0.185. The cutoff determined
by Davis (1995) is 0.15. The range of values pos-
sible for the SCD statistic is 0 to 2 when the
pollen data are characterized in terms of propor-
tions.

This paper presents a new, general analytical
framework for evaluating the issue of appropriate
cutoff levels when using multivariate distance met-
rics for analog selection. It employs the SCD with
a newly developed reference set of 41 modern
pollen surface samples from southern California,
USA (Wahl, 2003a) as a demonstration case. This
reevaluation is motivated by two considerations.

First, and most generally, motivation for reex-
amining cutoff value determination in the MAT
arises from a gap in the analytical structure of
previous work. Although the discussions by Over-
peck et al. (1985), Anderson et al. (1989), Davis
(1995), and Calcote (1998) rightly focus on reduc-
ing the chance of generating false positives when
choosing analogs, they do not rigorously consider
the concomitant risk of failing to correctly iden-
tify pollen spectra from similar vegetation (false
negative error — analogous to Type II error in
statistical hypothesis testing). These two types of
error are inversely related; reduction of false pos-
itives by lowering cutoff values carries a price in
terms of generating false negatives, and vice versa.
The nature of the tradeoff between these co-oc-
curring types of error needs to be addressed if
maximal information is to be recovered in analog
selection, and to guide decisions to accept ele-
vated levels of one kind of error in order to re-
duce the other. The analysis of cutoff values in
this study achieves these goals; it uses the com-
parative relationships between all possible pair-
ings of the surface samples in the new reference
set to determine an analog selection threshold that
minimizes the joint occurrence of both errors. It
also explicitly examines the nature of the tradeoffs
that occur when it is considered appropriate to



E.R. Wahl| Review of Palaeobotany and Palynology 128 (2004) 263-280 265

Los Angeles
Are
ad 23
Mt. Palomar,‘ta ‘
50 km e g
| o R
N 4 'San Diego ‘wmN
o Area H
118 W A~ 11T W . 118w
| S\ e |

Fig. 1. Digital elevation map of southwestern California, USA. The 41 surface sample sites used in this study are shown as dots.
In some cases multiple surface sample sites are indicated by one dot at the scale shown. Contour lines are shown at 0-m and
1500-m elevations. Darkness of color is associated with increasing elevation; dark gray—black shaded polygons approximately
represent regional montane areas (> 1500 m; max. elevation 3474 m). (Source data for DEM base map from US Geological Sur-

vey).

accept increased risk of one of the types of error
(beyond the joint minimum) for additional reduc-
tion of the other type of error.! Numerically, the
approach presented here is identical to ‘Receiver
Operating Characteristic’ (ROC) analysis, first de-
veloped for examination of signal detection char-
acteristics of radar systems and widely employed
in a number of other fields: e.g., in the evaluation
of medical and psychological laboratory tests, and

!' Precursors to the analysis presented here include: Ander-
son et al. (1989), who provide quantitative measurement of the
relative risks of generating false positives and false negatives at
three different cutoff levels; Davis (1995), who provides pro-
portionate relationships for the occurrences of same-type and
different-type samples over the range of SCDs between 0 and
1; and Calcote (1998), who examines the issue of creating false
negatives by setting a very low cutoff to strongly reduce the
chance of getting false positives. However, none of these ex-
aminations develops an analytical framework in which the
joint minimization of the two kinds of error can be evaluated.

the evaluation of weather forecast success (Hen-
derson, 1993; Zweig and Campbell, 1993; cf.
Green and Swets, 1988, for a canonical exposition
of ROC methods; cf. Mason and Graham, 2002,
for a review of ROC development). The examina-
tion of data and the presentation of results in this
paper are tailored to considerations specific to the
use of the MAT with multi-taxon microbiological
data sets. The approach presented here, along
with analyses developed by D. Gavin and W. Os-
wald that emphasize other issues in the use of the
MAT, represent the first application of ROC
methods for pollen-based paleoenvironmental re-
construction (cf. Gavin et al., 2003; Oswald et al.,
2003).

Second, the forests of cismontane southern Cal-
ifornia (west of the eastern, desert crest of the
coastal mountains) have unique vegetation and
species-specific physiological characteristics that
distinguish them from other montane forests in



266 E.R. Wahl| Review of Palaeobotany and Palynology 128 (2004) 263-280

Table 1
Surface sample site information
MAIN VEGETATION CATEGORY
Sample Latitude min sec | Longitude min sec | Elevation (m)
1 Lodgepole/Jeffrey/Fir Forest 34 12 10 116 46 55 2774
2 Western Juniper/Lodgepole Forest/Woodland 34 12 0 116 45 53 2746
3 Fir/Lodgepole Forest 34 12 4 116 45 57 2707
4 Fir/Limber/Juniper Woodland 34 12 30 116 51 19 2597
5 Fir/Jeffrey/Lodgepole Forest 34 7 21 116 46 51 2499
6 Jeffrey/Fir Forest 34 7 29 116 46 56 2481
7 Pine/Fir/Oak Forest 34 14 6 117 3 7 2243
8 Pine/Fir Forest 34 15 58 117 0o 21 2228
9 Pine/Fir Forest 34 1% 5 117 0 22 2228
10 Pine/Western Juniper/Fir Forest 34 10 20 116 43 4 2438
11 Lodgepole/Limber Forest 33 48 2 116 40 21 2926
12 Pine/Fir Forest 34 13 19 116 53 68 2402
13 Pine/Fir Forest 34 16 53 116 54 51 2286
14 Lodgepole/Fir Forest 33 48 24 116 39 12 2682
15 Fir/Pine Forest--Aspen Grove (> dense with Aspen) 34 8 54 116 47 59 2170
16 Fir/Pine Forest--Aspen Grove (< dense with Aspen) 34 8 54 116 47 59 2170
17 Pine/Fir/Oak/Cedar Forest 32 56 56 116 36 16 1890
18 Pine/Alder/Fir Forest 33 46 9 116 39 44 2405
19 Pine/Fir Forest 33 46 9 116 39 44 2405
20 Pine/Fir Forest 33 46 9 116 39 44 2402
21 Manzanita Chaparral 32 56 38 116 29 28 1692
22 Pine/Oak Forest 32 50 15 116 25 24 1829
23 Oak/Conifer Forest 34 8 5 116 58 56 1682
24 Cedar/Pine/Qak/Fir Forest 32 57 15 116 35 16 1573
25 Pine/Oak Forest 32 51 9 116 28 56 1554
26 Oak/Cedar/Pine Forest 32 58 2 116 35 8 1451
27 Oak/Cedar Stand--in Pine/Oak/Cedar/Fir Forest 32 58 10 116 3B 1 1448
28 Pine/Oak Open Forest Clearing 32 58 15 116 34 26 1439
29 QOak/Pine Forest 33 5 22 116 35 40 1228
30 Cedar/Oak/Fir Forest--Burn Site 33 20 13 116 54 27 1573
31 Meadow--in Pine/Oak/Cedar/Fir Forest 32 58 8 116 35 4 1439
32 Meadow--in Pine/Oak/Cedar/Fir Forest 32 58 6 116 3 5 1434
33 Mixed Chaparral--Mt. Mahogany dominated 32 56 58 116 33 35 1384
34  Sagebrush Steppe (> open phase) 32 51 2 116 31 17 1132
35 Sagebrush Steppe (> closed phase) 32 51 5 116 31 22 1125
36 Oak Woodland (> closed phase) 33 17 - 28 116 50 2 1414
37 Oak Woodland (> open phase) 32 49 9 116 37 7 1073
38  "Mixed Chaparral 32 52 9 116 36 29 1091
39 Mixed Chaparral 32 49 21 116 37 17 1061
40 Chamise Chaparral 32 51 21 116 44 30 817
41 Coastal Sage Scrub 33 149 17 5 34 244

Vegetation characterizations follow the usage of Munz (1974), Thorne (1988), and Hickman (1996). ‘Jeffrey’, ‘Limber’, and
‘Lodgepole’ in the conifer-dominated forest group are common names of important regional pine species.
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Fig. 2. Pair-wise comparison of 41 southern California surface samples in terms of SCD dissimilarity statistic. Boxes with vegeta-
tion names outline groups of samples with similar vegetation (Wahl, 2003a). Sample numbers are from Table 1.

the western USA. At the level of overall vegeta-
tion, these forests are often characterized as hav-
ing a depauperate Sierran flora (Munz, 1974;
Thorne, 1988), because they lack important tree
taxa — particularly the entire hemlock (7suga) ge-
nus and important species of fir (4bies) and pine
(Pinus) — along with numerous herbaceous plants
that characterize the forests of the Sierra Nevada
Mountains of northern California. At the level of
individual species, nearly all of the regional mon-
tane species of pine, fir, cedar (Calocedrus), and
arboreal oak (Quercus) are at their modern range
limits in southern California and adjacent Baja
California del Norte, Mexico (Little, 1971 ; Griffin
and Critchfield, 1976; Burns and Honkala, 1990;
Roberts, 1995). Trees of these taxa in the south-
ern California region are often shorter and of less
girth at maturity than is typical nearer the center

of their ranges (Zedler and Krofta, 1995), which
suggests that they are either exhibiting phenotypic
responses to abiotic stress or showing genetic
adaptation in situ to climate differentiation (Davis
and Shaw, 2001). The oak woodland, chaparral,
and coastal sage scrub vegetation just west and
below the montane zone are also unique to coast-
al California and northern Baja California del
Norte, Mexico (Griffin and Critchfield, 1976;
Hickman, 1996). These characteristics of the re-
gional vegetation call for reevaluation of cutoff
values that were developed for vegetation in other
regions of North America, including other parts
of California and the West (Davis, 1995). This
evaluation follows the result of Overpeck et al.
(1985) that there is need to reexamine previously
determined cutoff values depending on the scale
of application and the pollen registration charac-
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Fig. 3. Discrimination of vegetation groups in surface sample comparisons. (a) ‘Ideal Grid’ matrix representing perfect discrimi-
nation of surface samples: within-group and same-sample comparisons from Fig. 2 are assigned the value 1 (shaded); outside-of-
group and non-same-sample comparisons from Fig. 2 are assigned the value 0 (not shaded). (b) ‘Actual Grid’ matrix showing
SCDs between pairs of surface samples in Fig. 2 in relation to a given cutoff value: SCDs < cutoff are assigned the value 1
(shaded); SCDs = cutoff are assigned the value 0 (not shaded). Example cutoff value is 0.225.

teristics of the surface and fossil samples to be
used in the MAT.

2. Methods
2.1. Surface sample set

The locations of the 41 sample sites in the study
region are shown in Fig. 1 and are listed with
vegetation and elevation information in Table 1.
At each site 5-10 surface-soil sub-samples were
collected and mixed together, according to the
collection protocol of Adam and Mehringer
(1975). The pollen registration of the samples is

generally able to distinguish vegetation differences
(e.g. an oak—cedar stand in a matrix of pine-oak—
cedar—fir forest) at distances on the order of 50—
150 m, and there are very low levels of back-
ground pollen of abundant producers (e.g. back-
ground Quercus pollen at conifer-dominated for-
est sites or background Pinus pollen at non-
forested sites) (Wahl, 2003a). Vegetation charac-
terizations are based on surveys taken around the
sample sites; the vegetation categories conform to
those identified in the botanical and vegetation
literature of the region (Munz, 1974; Thorne,
1988). The collection and laboratory methods
used and the vegetation/pollen relationships of
the samples are described in detail in Wahl
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Fig. 4. Geometric representation of joint minimization of false positive and false negative errors. This graph shows three levels of
generality. (a) The bold unit square with (1,1), (0,0), (0,1), and (1,0) vertices shows the four possible states that a comparison of
two corresponding grid cells from the ‘Ideal Grid’ and the ‘Actual Grid’ (Fig. 3) can have for a given SCD cutoff. Matches be-
tween the ‘Ideal Grid” and ‘Actual Grid’ are at (1,1) for true positives and (0,0) for true negatives. Discrepancies are at (0,1) for
false positives and (1,0) for false negatives. (b) The cumulative numbers of the (1,1), (0,0), (0,1), and (1,0) values generated for
all 861 intercomparisons among the 41 surface samples at a given cutoff value can be pictured as summations of the counts for
each state at their appropriate vertices. The maximum number of (1,1) and (0,0) values possible is indicated next to these vertices.
The ratio 2(1,1)/182 (called the true positive fraction) gives the proportion of surface samples that should be chosen and are
[Z(L,1)] to the total that should be chosen [182]; false negative errors are smaller as this ratio is closer to one. The ratio 2(0,0)/
679 (called the true negative fraction) gives the proportion of surface samples that should not be chosen and are not [2(0,0)] to
the total that should not be chosen [679]; false positive errors are smaller as this ratio is closer to one, or as [(1—2(0,0)/679)] is
closer to zero. The values 2(1,1)/182 and [(1—2(0,0)/679)] are represented geometrically by pairs of right and left vertical inter-
cepts, respectively — shown as dots on the sides of the unit square, and scaled by the separate scale bars flanking the sides of the
unit square. The difference between these values (in the order, right-to-left) determines the slope of the line segment connecting
the two intercepts. (c) The situation of varying the cutoff value over its entire range of 0-2 can be represented by calculating the
slopes determined by the changing left- and right-side intercept values as the cutoff value in varied (explained in detail in text).
An ideal situation is represented by the diagonal in the unit square with a slope of one; in this situation all sample intercompari-
sons for a given cutoff are either true positives [2(1,1) = 182] or true negatives [2(0,0) = 679]. The cutoff value(s) that jointly mini-
mize false positive and false negative error are those that generate the maximum slope value for a given data set, which in actual
situations will be <1.

(2003a). The primary pollen count data are ar-
chived with the North American Pollen Data
Base and are accessible on the World Wide Web
at http://www.ngdc.noaa.gov/paleo/pollen.html.

2.2. Squared chord distance formula and included
pollen types

SCD is defined by the formula:

SCDjy = =i (> —rii’)’

where p is the pollen proportion (expressed in the
range 0-1) of a type included in the comparison,
i=1.n are the included pollen types, and j and k
represent the two samples being compared (Over-
peck et al., 1985).

The included pollen types and groupings of pol-
len categories used in the SCD calculations are
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described in the Appendix. The proportions used
in the calculations were determined in relation to
the sum of included pollen (Calcote, 1998). The
SCD relationships between all possible pairings of
the surface samples, grouped by similarity of veg-
etation — with a few samples removed from the
groups and treated individually because of unique
pollen representation characteristics (Wahl, 2003a;
cf. Calcote, 1998) — are shown in Fig. 2.

2.3. Analytical determination of cutoff values in the
modern analog technique that jointly minimize false
positive and false negative errors

In order to determine a cutoff value for the
analog selection threshold that jointly minimizes
both false positive and false negative errors, the
following method was used. Two grids of 1’s
(ones) and 0’s (zeros) were established, conform-
ing to the structure of the SCD comparison grid
in Fig. 2 (Fig. 3). The ‘Ideal Grid’ (IG) in Fig. 3a
represents the results of an ideal cutoff that would
sort all the like-vegetation samples together (rep-
resented by the 1’s) and would distinguish these
from all the non-like-vegetation samples (repre-
sented by the 0’s). Such perfect discrimination be-
tween vegetation types does not occur in the real
pollen samples, which overlap across the group-
ings to some degree to form the ‘Actual Grid’
(AG) (Figs. 2 and 3b; cf. Calcote, 1998). At the
particular cutoff value of 0.225, which is the best
for this data set in terms of jointly minimizing
false positive and negative errors (reported below,
Fig. 5), most of the ‘within-group’ comparisons
receive 1’s and most of the ‘outside-of-group’
comparisons receive 0’s, representing good, al-
though not perfect, discrimination (Fig. 3b).
Most of the ‘outside-of-group’ comparisons re-
ceiving 1’s in Fig. 3b represent comparisons be-
tween samples from vegetation types that have
significant similarity in plant composition, e.g.
the montane conifer forests dominated by pine
and fir compared with conifer forests that have
significant cover of western juniper (Juniperus oc-
cidentalis, var. australis; common name sensu
Munz, 1974), and the mixed conifer—oak forests
compared with the conifer-dominated forests and
the oak woodlands.

Quantitative and geometric comparison of the
patterns of I’s and 0’s in the two grids allows
rigorous determination of how well a given cutoff
value compares to the ideal cutoff (Fig. 4). The
two sets of values in the comparison are the 861
[n(n+1)/2, where n=41] 1’s and 0’s from the cells
along and below the diagonal in each grid, both
sets having the same order of cells. The vertices of
the unit square in Fig. 4 represent the four possi-
ble combinations of 1’s and 0’s that each of the
861 pairs of cells can take. Matches between the
IG and AG are at (1,1) for true positives (correct
identification of like-vegetation sample compari-
sons) and (0,0) for true negatives (correct iden-
tification of non-like-vegetation sample compari-
sons). Discrepancies are at (0,1) for false positives
(failure to correctly identify non-like-vegetation
sample comparisons) and (1,0) for false negatives
(failure to correctly identify like-vegetation sam-
ple comparisons).

Perfect discrimination of ‘within-group’ and
same-sample comparisons from ‘outside-of-group’
and non-same-sample comparisons at a particular
cutoff value is represented geometrically by the
solid line that connects (0,0) and (1,1) in the fig-
ure. If all the AG values were identical to the IG
values, the overall comparison of the AG and IG
would be this line, with a slope of one. This sit-
uation represents absolute minimization of both
false positive and false negative errors, and helps
demonstrate the analytical definition of these er-
rors, their corresponding true negative and true
positive fractions, and the individual and joint
minimization of the two kinds of error.

False negative error is measured using the ratio
of actual (1,1) values to the maximum number
possible, 182 — shown in Fig. 4 by the reduction
of the height of the right-side intercept below one.
This error equals 1—2(1,1)/182, and is individu-
ally minimized when 1—23(1,1)/182 is minimized,
or when the corresponding true positive fraction
[Z(1,1)/182] is maximized.

False positive error is measured using the ratio
of actual (0,0) values to the maximum number
possible, 679 — shown in Fig. 4 by the increase
in the height of the left-side intercept above
zero. This error equals 1—2(0,0)/679, and is indi-
vidually minimized when 1—2(0,0)/679 is mini-
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mized, or when the corresponding true negative
fraction [2(0,0)/679] is maximized.

Joint minimization of both errors can be
achieved using any one of four equivalent criteria:
(1) minimizing the sum of false negative and false
positive errors; (2) maximizing the sum of the
true positive and true negative fractions; (3) max-
imizing the difference between the true positive
fraction and false positive error; and (4) maximiz-
ing the difference between the true negative frac-
tion and false negative error. ROC analysis con-
ventionally uses criterion (3), which numerically
means maximizing the difference [2(1,1)/182—
(1—2(0,0)/679)] — represented in Fig. 4 as max-
imization of the slope of the line connecting the
left- and right-side intercepts.

At a cutoff value of 0, all the values in the
comparison are true negatives (0,0) or false neg-
atives (1,0). No SCD comparisons are selected as
matches. This situation represents maximum false
negative error coupled with minimum false posi-
tive error. In this case, the line connecting the
intercepts lies on the ‘X axis’, with a slope of 0.
As the cutoff value is increased to any arbitrarily
small number greater than 0 (e.g. 1x10719), the
(0,0) values are all maintained (all the ‘outside-of-
group’ and non-same-sample comparisons are re-
jected when they should be), but 41 of the (1,0)
values change to true positives (1,1) (the same-
sample comparisons along the diagonal are
‘picked up’ because their SCDs are identically
zero). This situation still has minimum false pos-
itive error and a small amount less than maximum
false negative error, represented by the zero left
intercept and small positive right intercept of the
lower dashed line in Fig. 4. As the cutoff value is
increased, more and more of the ‘within-group’
comparisons are correctly selected along with
the same-sample comparisons (increasing the
number of (1,1) values and decreasing the number
of (1,0) values), and eventually some of the ‘out-
side-of-group’ and non-same-sample comparisons
are erroneously selected because of their relatively
low SCDs (increasing the number of false positive
(0,1) values and decreasing the number of (0,0)
values).

Up to a point, increasing the cutoff value gen-
erally correctly selects more ‘within-group’ com-

parisons than it erroneously selects ‘outside-of-
group’ and non-same-sample comparisons, which
makes the false negative error decrease more rap-
idly than the false positive error increases, indi-
cated graphically by the right intercept rising fast-
er than the left intercept (lower curved arrow
rising towards the upper dashed line). Even
though the slope of the line is rising in this case,
it can never be as large as one because some (0,1)
values are being added while the number of (1,1)
values is quickly rising. With further increases in
the cutoff value this process reverses; there are
fewer and fewer ‘within-group’ comparisons that
are additionally selected and more and more of
the ‘outside-of-group’ and non-same-sample com-
parisons are selected — the number of (0,1) values
now increases faster than the number of (1,1) val-
ues, indicated graphically by the upper curved ar-
row rising from the upper dashed line. Eventually
a cutoff value is reached below which all the
SCDs fall, which means that all the compared
values are (1,1) (correct selection of like samples)
and (0,1) (incorrect selection of unlike samples).
At this point the slope is again 0, but the left
intercept is 1. Empirically, this geometry means
that the slope of the line connecting the two in-
tercepts is =0, and has a maximum value <1.
When the slope is at its maximum for a particular
data set, the best possible combination of low
false positive and low false negative errors is
achieved.”

To examine the relationship between cutoff val-
ue and the joint minimization of both errors for
the new surface sample data set, 400 cutoffs were
input into the analysis described, covering the
range of possible SCD values between 0 and 2
in increments of 0.005 (starting at 0.005). The

2 Numerically, the slope value determined by the formula
[Z(1,1)/182—(1—2(0,0)/679)] is identical to the slope deter-
mined by a simple linear regression of the actual vs. ideal
sets of 1’s and 0’s. In this case, the geometry of Fig. 4 can
be interpreted as follows: the paired values of the elements
in the regression vectors all lie on the four vertices in Fig. 4;
the slope of the regression (dashed) line comes closest to the
diagonal between (0,0) and (1,1) when the ‘pull’ on the re-
gression line from (0,0) and (1,1) values is the greatest, i.e.
when there are the greatest combined cases of true negatives
and true positives.
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Fig. 5. Relationship between SCD cutoff value and joint occurrence of false positive and false negative errors for surface sample
data set. Difference between true positive fraction and false positive error (slope value), as described in text and Fig. 4, for:
(a) range of SCD values between 0-0.480, at 0.005 increments; (b) entire range of possible SCD values (0-2), at 0.005 incre-
ments. Joint minimization of the two kinds of error (=maximum discrimination between vegetation types in terms of the SCD
metric) occurs at highest values. For comparative purposes, panel (c) shows the normalized distributions of like-vegetation and
non-like-vegetation sample comparisons in relation to SCD.
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slopes of the intercept lines (i.e. the difference
[Z(1,1)/182—(1—2(0,0)/679)]) determined by each
of these cutoff values were then compared.

3. Results

The slope values of the intercept lines for the
examined cutoffs are shown in Fig. 5a,b. The single
lowest joint occurrence of false positive and false
negative errors (highest slope) occurs at a cutoff of
0.225. Around this value, the cutoffs in the range
between ~0.19 and ~0.285 all perform similarly
well in simultaneously reducing the two errors,
which implies that within this range there is lati-
tude in selecting a specific cutoff for use with little
diminution of minimization characteristics. For
comparative purposes, Fig. 5c shows the normal-
ized distributions of like-vegetation and non-like-
vegetation sample comparisons in relation to SCD.

The data from Fig. 5a,b are represented in tra-
ditional ‘ROC curve’ format (true positive frac-
tion vs. false positive error) in Fig. 6. In contrast
to Fig. 5a,b, which focuses on the relationship
between cutoff value and the joint occurrence of
false positive and false negative errors (the specific
goal of this paper), the ROC curve format focuses
on the overall power of the data to discriminate
between like and non-like cases, represented as
the area under the curve (AUC). The closer
AUC is to one, the greater is the capacity of the
data to distinguish like- and non-like comparisons
(in this case, in terms of vegetation). The AUC
for the new surface sample set is 0.978, which
represents excellent overall discrimination be-
tween the vegetation types in terms of their pollen
representation (Henderson, 1993; Zweig and
Campbell, 1993).

In order to test the extent to which including
unknown and unidentifiable pollen in the SCD
calculations (described in the Appendix) affects
the determination of cutoff levels that jointly min-
imize the two kinds of error, the entire analysis
was repeated excluding the grouped unknown,
unidentifiable, Ceanothus, Chenopodium/ Amaran-
thus, and ‘Other Fern/Ally’ categories. The results
of this experiment are close to those reported
above. In this case, the lowest joint occurrences

ROC Curve
Southern California Surface Samples

False Positive Error
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Area Under ROC Curve (AUC) = 0.978

Fig. 6. ROC curve for surface sample data set. Maximal
joint reduction of false positive and false negative errors oc-
curs at the point of intercept between the ROC data and a
1:1 line that is nearest to the upper-left corner of the graph,
shown by the dashed line. The SCD associated with this
combination of true positive fraction and false positive error
is, as in Fig. 5, 0.225. The SCDs associated with true posi-
tive fractions nearest 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 are shown
for comparative purposes. Geometrically, the ideal case of
perfect discrimination between samples from like and non-
like vegetation would be represented by a kinked ROC curve
that follows the left and upper boundaries of the graph; in-
dicating that a cutoff can be found that identifies all true
positive comparisons before any false positives are generated.
The AUC in this case is equal to 1. This situation is equiva-
lent to the diagonal in Fig. 4 that connects the (0,0) and
(1,1) vertices. [The solid line tracking the data points is a
five-point moving average. The AUC calculation sums the
areas of adjoining histogram rectangles determined from the
individual data points.]

of false positive and false negative errors are at
slightly lower cutoff values (0.205-0.22), and the
surrounding range of similarly well-performing
cutoffs is slightly wider and slightly lower
(~0.16 to ~0.275) than it is with the grouped
pollen category included. Because the grouped
pollen category carries useful information in
terms of the distinction between conifer-dominat-
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ed forests and other types of vegetation that is the
most salient feature of the surface sample set (cf.
Appendix), and because including or not includ-
ing this category has little effect on the cutoff
values that best reduce the joint occurrence of
false positive and false negative errors, I retained
the grouped pollen category in developing the pri-
mary results reported here and for comparing
these surface samples with fossil pollen assem-
blages (Wahl, in preparation).

A second check for robustness was done by
eliminating selected samples from the data set,
and recalculating Fig. 5a,b for each case. The
samples were chosen to represent three distinctive
cases in the data set: (1) sample 6, a conifer-dom-
inated forest site from the vegetation group with
the most samples, which has strong similarities to
the other conifer-dominated forests, but few close
similarities with samples outside its group; (2)
sample 25, a pine-oak forest site that has rela-
tively few close similarities to the other conifer—
oak forests, but a number of close similarities
with the conifer-dominated forests; and (3) sam-
ple 17, a pine-fir-oak—cedar forest site with un-
usual pollen representation characteristics (cf. Ap-
pendix) that cause it to be categorized separately
from the other forest samples. In each of these
cases the results are virtually identical to those
shown in Fig. 5a,b, which indicates that the anal-
ysis of joint error minimization is highly robust in
relation to the characteristics and inclusion/non-
inclusion of individual samples, even from a rela-
tively small data set.

4. Discussion

The joint minimization of false positive and

false negative errors establishes a benchmark cri-
terion against which the analog selection perfor-
mance of different cutoff values can be objectively
and quantitatively evaluated. I have avoided char-
acterizing cutoff(s) that achieve this criterion as
representing an ‘optimal’ situation because there
may be cases in which it is considered appropriate
to deviate from joint error minimization (JEM)
for particular analytical purposes. Using the crite-
rion of JEM implies that equal weight is being
given to avoiding occurrences of false positives
and false negatives. In the absence of a clear ra-
tionale for assessing the impact of the errors dif-
ferentially, an equal weighting scheme represents
a rational default criterion (much as it does in
establishing Bayesian prior probabilities in the ab-
sence of information suggesting specific weighting
of ‘priors’; cf. Gavin et al., 2003), but it is not the
only weighting scheme that could be reasonably
applied.

Following the use of ROC methods in the med-
ical literature, the analytical possibilities that arise
from differential weighting of the two kinds of
error can be explored by characterizing low num-
bers of false positives as high specificity, and low
numbers of false negatives as high sensitivity
(Henderson, 1993; Zweig and Campbell, 1993).
In the ROC curve format (Fig. 6) increasing spec-
ificity is measured from right-to-left along the
horizontal axis and increasing sensitivity from
bottom-to-top along the vertical axis (keeping in
mind that one minus true positive fraction equals
false negative error). It is easy to imagine cases in
which setting a decision threshold above or below
the JEM value(s) could be considered appropri-
ate, for the purpose of boosting either sensitivity
(threshold above JEM) or specificity (threshold
below JEM). In medicine, for example, if a test

Fig. 7. Idealized distributions of normalized like-vegetation and non-like-vegetation sample comparisons in relation to SCD as in
Fig. 5c (top part of each panel), with companion diagram showing the difference between the true positive fraction (TP) and false
positive error (FP) for each scenario as in Fig. 5b (bottom part of each panel). (a) Like-vegetation comparisons with relatively
narrow variance and non-like-vegetation comparisons with relatively wide variance. (b) Like-vegetation comparisons with rela-
tively narrow variance and non-like-vegetation comparisons with relatively wide variance, but less wide than in (a). (c) Like-vege-
tation and non-like-vegetation comparisons with same variance. (d) Like-vegetation comparisons with relatively wide variance
and non-like-vegetation comparisons with relatively narrow variance. The smooth continuum across (a)-(d) of changing relative
steepness on either side of the highest values for the TP-FP curves was confirmed with other examples (not shown) for inter-
mediate and more extreme cases of the relative variances of the like-vegetation and non-like-vegetation comparisons.
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is being used to identify cases of a highly conta-
gious disease (with the diseased state being indi-
cated by low test statistic values), it might be con-
sidered best to set a threshold for positive
identification above the JEM value(s), boosting
the test’s sensitivity (reducing false negative re-
sults) although sacrificing some of its specificity
(allowing relatively high amounts of false posi-
tives). In the opposite case, decreased false posi-
tive identifications might be sought by lowering
the threshold for positive identification of a dis-
ease below the JEM value(s), boosting the test’s
specificity although sacrificing some of its sensitiv-
ity (allowing relatively high amounts of false neg-
ative results).

For the purpose of choosing analogs for fossil
pollen samples from a modern pollen data set,
using a cutoff above the JEM value(s) could be
worth consideration when the modern data set
contains a relatively small number of samples —
i.e. deciding that the ability to identify a larger
number of analogs (increased sensitivity) is worth
extra uncertainty in terms of some loss of vegeta-
tion precision in analog selection (decreased spec-
ificity). The new southern California data set is a
potential example of this situation. Using a cutoff
below the JEM value(s) could be worth consider-
ation when employing a very sample-rich modern
data set — i.e. deciding that some likely analogs
can be sacrificed (decreased sensitivity) for the
purpose of reducing uncertainty in the vegetation
precision of the analogs selected (increased speci-
ficity). The modern pollen data available in east-
ern North America are a potential example of this
latter situation (cf. North American Pollen Data
Base). As a quantitative illustration of the latter
situation, the true positive fractions associated
with six cutoff values below the JEM value are
highlighted in Fig. 6, which illustrates how
much false negative error (one minus true positive
fraction) is associated with increasingly strict cut-
off values in the case of the southern California
data set.

The format for presentation of results in Fig. 5
provides additional information on the nature of
the sensitivity/specificity tradeoff that is relevant
in examining whether to use a cutoff above or
below the JEM value(s). The relative steepness of

the envelope of the histograms on either side of the
JEM range in Fig. 5a,b represents the relative
tradeoff between: (1) adding false positives as
the cost of decreasing false negatives (increasing
sensitivity/decreasing specificity) as cutoff value is
increased above JEM; and (2) adding false nega-
tives as the cost of decreasing false positives (in-
creasing specificity/decreasing sensitivity) as cutoff
value is decreased below JEM. For the data pre-
sented here, the steepness of this envelope is gen-
erally less for cutoffs above JEM than for cutoffs
below it, indicating that the additional cost of
adding false positives in order to reduce false neg-
atives at cutoffs above JEM generally increases
less quickly than the additional cost of adding
false negatives in order to reduce false positives
at cutoffs below JEM. (The positive or negative
values of the slopes are not relevant in this eval-
uation; rather, they indicate the direction of the
false positive/false negative tradeoffs as de-
scribed.) The asymmetric tradeoff of these costs
implies that decisions to use cutoffs below the
JEM value(s) should be considered with particular
care, both conceptually and quantitatively; e.g. in
the southern California data set the increase of
false negatives rises particularly fast as cutoffs
are lowered in the range between 0.140 and
0.030. (These considerations hold true for the al-
ternative definition of the pollen types included in
the SCD calculation, described in Section 3.)

In general, asymmetric cost tradeoffs between
the two types of error, favoring ‘too lenient’ cut-
offs over ‘too stringent’ cutoffs, can be seen to
result from the relative variances of the distribu-
tions of like-vegetation and non-like-vegetation
sample comparisons that underlie the JEM pro-
cess (cf. Fig. 5c). This characteristic is demon-
strated geometrically in Fig. 7, which shows ideal-
ized distributions of like-vegetation and non-like-
vegetation comparisons along with their corre-
sponding distributions of true positive fraction
minus false positive error, as in Fig. 5 (cf. Green
and Swets, 1988, p. 95). Fig. 7 shows that a rela-
tively narrow variance of the like-vegetation com-
parisons coupled with a relatively wide variance
of the non-like-vegetation comparisons leads to
an asymmetric cost tradeoff of the kind reported
here. In contrast, a relatively wide variance of the
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like-vegetation comparisons coupled with a rela-
tively narrow variance of the non-like-vegetation
comparisons leads to the opposite kind of asym-
metry: favoring ‘too stringent’ cutoffs over ‘too
lenient’ cutoffs when a value above or below
JEM is being considered.

The combination of a relatively narrow var-
iance of the like-vegetation comparisons with a
relatively wide variance of the non-like-vegetation
comparisons noted for the southern California
data set (Fig. 5c) is consistently observed in other
modern pollen surface sample sets for which SCD
histograms of like-vegetation vs. non-like-vegeta-
tion sample comparisons are reported (Anderson
et al., 1989; Davis, 1995; Gavin et al., 2003; Os-
wald et al., 2003). This characteristic is not gen-
eral across all distance metrics, however, as dem-
onstrated for use of the SCD in relation to the
‘equal weight’” Canberra Metric (Prentice, 1980;
Overpeck et al., 1985) by Oswald et al. (2003).
The SCD histograms of like- and non-like-vegeta-
tion comparisons reported by Oswald et al. result
in a true positive minus false positive distribution
(reported in the equivalent form of true positive
fraction plus true negative fraction) with the same
asymmetry noted here, whereas the true positive
minus false positive distribution that results from
the corresponding Canberra Metric histograms of
like- and non-like-vegetation comparisons is sym-
metric (cf. Fig. 7c). This counter-example is suffi-
cient to demonstrate that, although the asymmet-
ric cost tradeoffs noted for cutoffs above and
below JEM appear to be consistent across modern
pollen surface sample sets when sample-to-sample
comparisons employ the SCD, there is no general
asymmetry for these tradeoffs across the multi-
variate metrics that have been examined for use
with pollen data (Prentice, 1980; Overpeck et al.,
1985; Juggins, 2003; Gavin et al., 2003). A gen-
eral examination of this issue across metrics is
beyond the scope of this paper, and constitutes
an important area for further research.

The methods, results, and discussion in this pa-
per have focused on the analytical capacity of
multivariate distance metrics (especially the
SCD) to distinguish pollen samples from like
and non-like vegetation. A parallel analysis is pos-
sible in terms of determining cutoff values to use

in reconstructing climate with modern pollen ana-
logs for fossil pollen assemblages. In an indepen-
dent analysis of the southern California data set
that examines how different SCD cutoff levels af-
fect the ability of the samples to act as estimators
of modern temperature (when used as analogs for
each other), degradation of the temperature re-
constructions on either side of the best-perform-
ing cutoff values (0.20-0.25) shows the same
tradeoff asymmetry as the results reported here
for discriminating like from non-like vegetation
(Wahl, 2003b). Other work by Lytle and Wahl,
which employs a large (n=2884) regional surface
sample reference set in conjunction with Monte
Carlo-based subsampling of fossil pollen spectra
to generate replicated reconstructions of paleo-
temperature for a site in northern Michigan,
USA, also shows a related asymmetry (Lytle
and Wahl, in review). In this analysis, the degra-
dation of precision of reconstructed climate is
much more pronounced as the cutoff value is low-
ered from a SCD of 0.15 to 0.05, in comparison
to degradations above the best reconstruction
range of 0.20-0.35.

An additional dimension of the cost of using
highly conservative cutoff values in order to
strongly reduce false positive errors is demon-
strated by Lytle and Wahl in terms of the inter-
actions among pollen count size, cutoff value, and
reconstruction precision. Count sizes of =150
grains (included in the SCD sum) at the best cut-
offs yield reconstruction precisions as good or bet-
ter than those that can be achieved with counts of
1000 grains at very low cutoffs of 0.05 and 0.10.
This result underscores the cost of employing very
low cutoffs, which (at least with the SCD) leads to
large numbers of false negative identifications that
would otherwise add useful information. In effect,
highly conservative cutoffs lead to under-utiliza-
tion of the vegetation and climate information in
the pollen assemblages used in the reconstruction
process. From the standpoint of temperature re-
construction, this information loss cannot be re-
moved even by increasing count size several-fold.
This cost (in terms of both reconstruction preci-
sion and compensating analytical effort) cannot
be properly appreciated when selection of analog
threshold values is examined primarily in terms of
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reducing false positive errors. When analysis of
potential cutoffs is done in terms of discriminating
like- and non-like-vegetation samples, the ROC-
based analytical methods described here provide
powerful tools that can lead toward full utiliza-
tion of the information content in pollen assem-
blages, and can guide decisions to select cutoffs
that are either above or below JEM value(s) for
particular analytical purposes.

The methods of analysis presented are general
and can be used with any modern surface sample
reference set. In contrast, the reported JEM val-
ue(s) and rates of error—cost tradeoffs for cutoffs
above and below the JEM value(s) are specific to
the data set examined. This consideration is ap-
parent from the comparison between the southern
California data set and the regional northeastern
North American data discussed above, and can be
seen in relation to other regional data sets (Gavin
et al., 2003; Oswald et al., 2003). In addition to
differences in regional vegetation, specificity of re-
sults to particular data sets and kinds of analyses
also arises from: (1) the number of taxa that are
included in the SCD pollen sum (Sawada et al.,
2001); (2) the use of a nearest-neighbor criterion
for analog selection (Gavin et al., 2003) instead of
examination of all the potential paired compari-
sons done here; and (3) the scale of vegetation
differences among vegetation types when ROC
analysis is used sequentially within a given data
set to compare each vegetation type in turn with
all the other types (Gavin et al., 2003). These
considerations indicate that the analysis of appro-
priate cutoff values needs to be considered as a
good-practice portion of research design for every
paleoecological research project that uses multi-
variate distance metrics in the MAT, unless the
case can be made that an existing analysis can
be reasonably applied for a particular project.

Finally, the methods described in this paper are
not unique to MAT applications with pollen data.
They should be equally applicable to any tech-
nique of paleoenvironmental reconstruction that
uses multivariate comparison to modern multi-
taxon reference sets. Examples of these other
kinds of techniques include reconstructions based
on diatom, phytolith, and foraminifera assem-
blages.
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Appendix. Pollen types and groupings used in SCD
calculations

The included pollen types are listed below, fol-
lowing Wahl (2003a):

Pinus Adenostoma fasciculatum
Abies Rhus/Toxicodendron type
Cupressaceae Ericaceae

Quercus Ceanothus type
Artemisia Pteridium aquilinum
Other Asteraceae Other fern/ally spores
Poaceae Unidentifiable pollen

Chenopodiuml Amaranthus type Unknown pollen

Pine pollen was included at the genus level of
taxonomic resolution because most pine grains
counted in the surface samples were either of
the mixed Pinus ponderosaljeffreyilcoulteri type
or indeterminate to sub-generic categories, and
because few pine grains can be distinguished to
sub-generic categories in the fossil pollen record
for which these surface samples are used as a
potential analog set (Wahl, in preparation).

The Ceanothus, Chenopodium|/ Amaranthus, and
‘Other Fern/Ally’ pollen taxa were summed to-
gether with the unknown and unidentifiable cate-
gories in the SCD calculations. This grouping
adds together the least represented non-arboreal
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pollen types (with the exception of the Ericaceae-
undifferentiated taxon, which in this region is
largely associated with manzanita (Arctostaphylos
spp.) chaparral) with the unidentifiables and un-
knowns to form a generic category of largely non-
arboreal pollen. (Ceanothus occurs as non-arbore-
al shrubs in the study region.) Categorizing un-
known and unidentifiable pollen as largely non-
arboreal is justifiable based on experience in pol-
len counting, in which the pollen types of all the
regional trees are known and the only kind of
arboreal pollen that may have been included in
the unidentifiable category due to poor preserva-
tion is oak. (Poorly preserved material with some
resemblance to pine, fir, alder (A/nus), aspen/cot-
tonwood (Populus), or Cupressaceae pollen either
was positively identifiable as one of these types or
could not confidently be considered to be pollen.)
The possible oak grains that were included in the
unidentifiable category are generally much less
than 30% of the total unidentifiable pollen; the
exceptions are in samples with otherwise high lev-
els of oak pollen. At the least, the combined,
largely non-arboreal category represents pollen
that is not from coniferous trees. Since the dis-
tinction between the conifer-dominated forests
and other kinds of vegetation in the region is
the single most important characteristic of the
pollen record utilized here (Wahl, 2003a), includ-
ing the unidentifiables and unknowns preserves
useful information.

Because of idiosyncratic biases in the pollen
representation characteristics of sample 17 (mon-
tane conifer forest), caused by orographic and
vegetation factors, Adenostoma fasciculatum and
Ceanothus were excluded from the pollen sum of
this sample in calculating the SCDs (Wahl,
2003a).

All taxonomic references conform with Hick-
man (1996).
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